11 research outputs found

    Critical Behavior of Dynamically Triangulated Quantum Gravity in Four Dimensions

    Full text link
    We performed detailed study of the phase transition region in Four Dimensional Simplicial Quantum Gravity, using the dynamical triangulation approach. The phase transition between the Gravity and Antigravity phases turned out to be asymmetrical, so that we observed the scaling laws only when the Newton constant approached the critical value from perturbative side. The curvature susceptibility diverges with the scaling index .6-.6. The physical (i.e. measured with heavy particle propagation) Hausdorff dimension of the manifolds, which is 2.3 in the Gravity phase and 4.6 in the Antigravity phase, turned out to be 4 at the critical point, within the measurement accuracy. These facts indicate the existence of the continuum limit in Four Dimensional Euclidean Quantum Gravity.Comment: 12pg

    Ising-link Quantum Gravity

    Get PDF
    We define a simplified version of Regge quantum gravity where the link lengths can take on only two possible values, both always compatible with the triangle inequalities. This is therefore equivalent to a model of Ising spins living on the links of a regular lattice with somewhat complicated, yet local interactions. The measure corresponds to the natural sum over all 2^links configurations, and numerical simulations can be efficiently implemented by means of look-up tables. In three dimensions we find a peak in the ``curvature susceptibility'' which grows with increasing system size. However, the value of the corresponding critical exponent as well as the behavior of the curvature at the transition differ from that found by Hamber and Williams for the Regge theory with continuously varying link lengths.Comment: 11 page

    de Sitter gravity from lattice gauge theory

    Get PDF
    We investigate a lattice model for Euclidean quantum gravity based on discretization of the Palatini formulation of General Relativity. Using Monte Carlo simulation we show that while a naive approach fails to lead to a vacuum state consistent with the emergence of classical spacetime, this problem may be evaded if the lattice action is supplemented by an appropriate counter term. In this new model we find regions of the parameter space which admit a ground state which can be interpreted as (Euclidean) de Sitter space.Comment: 16 pages, 11 figures. email address update

    Noncomputability Arising In Dynamical Triangulation Model Of Four-Dimensional Quantum Gravity

    Full text link
    Computations in Dynamical Triangulation Models of Four-Dimensional Quantum Gravity involve weighted averaging over sets of all distinct triangulations of compact four-dimensional manifolds. In order to be able to perform such computations one needs an algorithm which for any given NN and a given compact four-dimensional manifold MM constructs all possible triangulations of MM with N\leq N simplices. Our first result is that such algorithm does not exist. Then we discuss recursion-theoretic limitations of any algorithm designed to perform approximate calculations of sums over all possible triangulations of a compact four-dimensional manifold.Comment: 8 Pages, LaTex, PUPT-132

    Phase diagram of Regge quantum gravity coupled to SU(2) gauge theory

    Get PDF
    We analyze Regge quantum gravity coupled to SU(2) gauge theory on 43×24^3\times 2, 63×46^{3}\times 4 and 83×48^{3}\times 4 simplicial lattices. It turns out that the window of the well-defined phase of the gravity sector where geometrical expectation values are stable extends to negative gravitational couplings as well as to gauge couplings across the deconfinement phase transition. We study the string tension from Polyakov loops, compare with the β\beta-function of pure gauge theory and conclude that a physical limit through scaling is possible.Comment: RevTeX, 14 pages, 5 figures (2 eps, 3 tex), 2 table

    Condensation in nongeneric trees

    Full text link
    We study nongeneric planar trees and prove the existence of a Gibbs measure on infinite trees obtained as a weak limit of the finite volume measures. It is shown that in the infinite volume limit there arises exactly one vertex of infinite degree and the rest of the tree is distributed like a subcritical Galton-Watson tree with mean offspring probability m<1m<1. We calculate the rate of divergence of the degree of the highest order vertex of finite trees in the thermodynamic limit and show it goes like (1m)N(1-m)N where NN is the size of the tree. These trees have infinite spectral dimension with probability one but the spectral dimension calculated from the ensemble average of the generating function for return probabilities is given by 2β22\beta -2 if the weight wnw_n of a vertex of degree nn is asymptotic to nβn^{-\beta}.Comment: 57 pages, 14 figures. Minor change

    The Harris-Luck criterion for random lattices

    Get PDF
    The Harris-Luck criterion judges the relevance of (potentially) spatially correlated, quenched disorder induced by, e.g., random bonds, randomly diluted sites or a quasi-periodicity of the lattice, for altering the critical behavior of a coupled matter system. We investigate the applicability of this type of criterion to the case of spin variables coupled to random lattices. Their aptitude to alter critical behavior depends on the degree of spatial correlations present, which is quantified by a wandering exponent. We consider the cases of Poissonian random graphs resulting from the Voronoi-Delaunay construction and of planar, ``fat'' ϕ3\phi^3 Feynman diagrams and precisely determine their wandering exponents. The resulting predictions are compared to various exact and numerical results for the Potts model coupled to these quenched ensembles of random graphs.Comment: 13 pages, 9 figures, 2 tables, REVTeX 4. Version as published, one figure added for clarification, minor re-wordings and typo cleanu

    Optimal Coding and Sampling of Triangulations

    No full text
    Abstract. We present a simple encoding of plane triangulations (aka. maximal planar graphs) by plane trees with two leaves per inner node. Our encoding is a bijection taking advantage of the minimal Schnyder tree decomposition of a plane triangulation. Coding and decoding take linear time. As a byproduct we derive: (i) a simple interpretation of the formula for the number of plane triangulations with n vertices, (ii) a linear random sampling algorithm, (iii) an explicit and simple information theory optimal encoding.

    SHEAR STRENGTH OF TERNARY BLENDED FIBRE REINFORCED CONCRETE BEAMS USING HOOKED FIBRES

    No full text
    Abstract — Concrete is a construction material which is most widely used in the world. Its use has been so extensive because of ease of construction and its properties like compressive strength, flexural strength and durability. Plain concrete is very good in resisting compressive stresses but possesses a low modulus of rupture, limited ductility and little resistance to cracking. Tensile strength of concrete is very low which is taken care of by the incorporation of steel which is strong in resisting tensile stresses. In the recent past, behavior of reinforced concrete beams in shear has been studied extensively. An exact analysis of shear strength in reinforced concrete beam is quite complex. Several experimental studies have been conducted to understand the various modes of failure that could occur due to possible combination of shear and bending moment acting at a given section. The mai
    corecore